Item |
Information |
Drug Groups
|
approved |
Description
|
A benzimidazole broad-spectrum anthelmintic structurally related to mebendazole that is effective against many diseases. (From Martindale, The Extra Pharmacopoeia, 30th ed, p38) |
Indication |
For the treatment of parenchymal neurocysticercosis due to active lesions caused by larval forms of the pork tapeworm, Taenia solium and for the treatment of cystic hydatid disease of the liver, lung, and peritoneum, caused by the larval form of the dog tapeworm, Echinococcus granulosus. |
Pharmacology |
Albendazole is a broad-spectrum anthelmintic. The principal mode of action for albendazole is by its inhibitory effect on tubulin polymerization which results in the loss of cytoplasmic microtubules. |
Toxicity |
Symptoms of overdose include elevated liver enzymes, headaches, hair loss, low levels of white blood cells (neutropenia), fever, and itching. |
Affected Organisms |
• |
Helminthic Microorganisms |
|
Biotransformation |
Hepatic. Rapidly converted in the liver to the primary metabolite, albendazole sulfoxide, which is further metabolized to albendazole sulfone and other primary oxidative metabolites that have been identified in human urine. |
Absorption |
Poorly absorbed from the gastrointestinal tract due to its low aqueous solubility. Oral bioavailability appears to be enhanced when coadministered with a fatty meal (estimated fat content 40 g) |
Half Life |
Terminal elimination half-life ranges from 8 to 12 hours (single dose, 400mg). |
Protein Binding |
70% bound to plasma protein |
Elimination |
Albendazole is rapidly converted in the liver to the primary metabolite, albendazole sulfoxide, which is further metabolized to albendazole sulfone and other primary oxidative metabolites that have been identified in human urine. Urinary excretion of albendazole sulfoxide is a minor elimination pathway with less than 1% of the dose recovered in the urine. Biliary elimination presumably accounts for a portion of the elimination as evidenced by biliary concentrations of albendazole sulfoxide similar to those achieved in plasma. |
References |
• |
Molina AJ, Merino G, Prieto JG, Real R, Mendoza G, Alvarez AI: Absorption and metabolism of albendazole after intestinal ischemia/reperfusion. Eur J Pharm Sci. 2007 May;31(1):16-24. Epub 2007 Feb 6.
[Pubmed]
|
• |
Oxberry ME, Reynoldson JA, Thompson RC: The binding and distribution of albendazole and its principal metabolites in Giardia duodenalis. J Vet Pharmacol Ther. 2000 Jun;23(3):113-20.
[Pubmed]
|
• |
Ramirez T, Benitez-Bribiesca L, Ostrosky-Wegman P, Herrera LA: In vitro effects of albendazole and its metabolites on the cell proliferation kinetics and micronuclei frequency of stimulated human lymphocytes. Arch Med Res. 2001 Mar-Apr;32(2):119-22.
[Pubmed]
|
• |
Haque A, Hollister WS, Willcox A, Canning EU: The antimicrosporidial activity of albendazole. J Invertebr Pathol. 1993 Sep;62(2):171-7.
[Pubmed]
|
|
External Links |
|