Home > Compound List > Product Information
Ruthenium(III) chloride hydrate, 99.9% (PGM basis), Ru 38% min_Molecular_structure_CAS_14898-67-0)
Click picture or here to close

Ruthenium(III) chloride hydrate, 99.9% (PGM basis), Ru 38% min

Catalog No. 11043 Name Alfa Aesar
CAS Number 14898-67-0 Website
M. F. Cl3Ru Telephone
M. W. 207.429 Fax
Purity 99.9% (PGM basis), Ru 38% min Email
Storage Chembase ID: 110962

SYNONYMS

Title
氯化钌(III)水合物, 99.9% (PGM basis), Ru 38% 最低
IUPAC name
ruthenium(3+) ion trichloride
IUPAC Traditional name
ruthenium(3+) ion trichloride

DATABASE IDS

Merck Index 148302
CAS Number 14898-67-0
EC Number 233-167-5
MDL Number MFCD00149844

PROPERTIES

Purity 99.9% (PGM basis), Ru 38% min
Apperance Crystalline Soluble
Melting Point 100°Cdec
Solubility Very soluble in water. Soluble in alcohol, acetone
GHS Pictograms GHS05
GHS Pictograms GHS07
GHS Hazard statements H314-H318-H290-H302-H412
European Hazard Symbols X
European Hazard Symbols Corrosive Corrosive (C)
GHS Precautionary statements P260-P303+P361+P353-P305+P351+P338-P301+P330+P331-P405-P501A
Risk Statements 22-34-53
RTECS VM2650000
Safety Statements 20-26-36/37/39-45-60-61
Storage Warning Hygroscopic
TSCA Listed
Hazard Class 8
UN Number UN3260
Packing Group III

DETAILS

REFERENCES

  • In the presence of NaOH, is a catalyst for the high-yield rearrangement of sec-allylic alcohols to saturated ketones: J. Chem. Soc., Chem. Commun., 594 (1980). In MeOH, allyl alcohols are converted to allyl ethers. The thermodynamically more stable isomer predominates: Synth. Commun., 12, 807 (1982):
  • In the presence of 2,2'-bipyridine, catalyzes the stereospecific epoxidation of alkenes. The configuration of the alkene is retained: Tetrahedron Lett., 25, 3187 (1984).
  • For a brief survey of uses of RuC3 in Organic synthesis, see: Synlett, 1974 (2007).
  • Used catalytically, in the presence of a suitable reoxidant, such as periodate or sometimes hypochlorite, RuCl3 is a source of the powerful oxidizing agent, ruthenium(VIII) oxide, RuO4: J. Org. Chem., 46, 3936 (1981); J. Am. Chem. Soc., 103, 464 (1981).
  • Oxidations by RuO4 include: Alkenes to carboxylic acids: J. Am. Chem. Soc., 103, 464 (1981); Org. Synth. Coll., 8, 377 (1993). In biphasic solvent systems, the reaction can also be controlled to give good yields of syn-diols: Angew. Chem. Int. Ed., 33, 2312 (1994); Chem. Eur. J., 2, 50 (1996). For an improved protocol, employing only 0.5 mol% catalyst, see: Org. Lett., 5, 3353 (2003). For oxidation of diols to carboxylic acids: J. Org. Chem., 53, 5185 (1988). `,a-Enones to carboxylic acids: J. Org. Chem., 52, 689 (1987). Alkynes to `-diketones: Helv. Chim. Acta, 71, 237 (1988). Ethers to esters: Tetrahedron Lett., 24, 3829 (1983). Amines to amides: Chem. Pharm. Bull., 36, 3125 (1988). Methylbenzenes to benzoic acids: J. Org. Chem., 51, 2880 (1986). For the oxidation of alkenes, alcohols and aromatic rings to carboxylic acids in a biphasic system, see: J. Org. Chem., 55, 1928 (1990). For discussion of the mechanism of oxidation of hydrocarbons and ethers, see: J. Phys. Org. Chem., 9, 310 (1996). In many of these oxidations, acetonitrile has been found to be superior to other solvents due to its effective coordination to the metal. Review: J. L. Courtney in Organic Syntheses by Oxidation with Metal Complexes, W. J. Mijs et al, Eds., Plenum Press, London (1986), p 445. For a review of RuO4-catalyzed dihydroxylation, ketohydroxylation and mono oxidation, in the synthesis of diols and `-hydroxy ketones, see: Org. Biomol. Chem., 2, 2403 (2004).