Item |
Information |
Drug Groups
|
approved; investigational |
Description
|
Tetrahydrobiopterin or BH4 is a cofactor in the synthesis of nitric oxide. It is also essential in the conversion of phenylalanine to tyrosine by the enzyme phenylalanine-4-hydroxylase; the conversion of tyrosine to L-dopa by the enzyme tyrosine hydroxylase; and conversion of tryptophan to 5-hydroxytryptophan via tryptophan hydroxylase. [Wikipedia] |
Indication |
For the treatment of tetrahydrobiopterin (BH4) deficiency. |
Pharmacology |
Tetrahydrobiopterin (BH4) is used to convert several amino acids, including phenylalanine, to other essential molecules in the body including neurotransmitters. Tetrahydrobiopterin deficiency can be caused by mutations in GTP cyclohydrolase 1 (GCH1), 6-pyruvoyl-tetrahydropterin synthase/dimerization cofactor of hepatocyte nuclear factor 1 alpha (PCBD1), 6-pyruvoyltetrahydropterin synthase (PTS), and quinoid dihydropteridine reductase (QDPR) genes. These genes make the enzymes that are critical for producing and recycling tetrahydrobiopterin. If one of the enzymes fails to function correctly because of a gene mutation, little or no tetrahydrobiopterin is produced. As a result, phenylalanine from the diet builds up in the bloodstream and other tissues and can damage nerve cells in the brain. High levels of phenylalanine can result in signs and symptoms ranging from temporary low muscle tone to mental retardation, movement disorders, difficulty swallowing, seizures, behavioral problems, progressive problems with development, and an inability to control body temperature. |
Affected Organisms |
• |
Humans and other mammals |
|
References |
• |
Thony B, Auerbach G, Blau N: Tetrahydrobiopterin biosynthesis, regeneration and functions. Biochem J. 2000 Apr 1;347 Pt 1:1-16.
[Pubmed]
|
|
External Links |
|
|