Home > Compound List > Compound details
546-67-8 molecular structure
click picture or here to close

lead(4+) ion tetraacetate

ChemBase ID: 295365
Molecular Formular: C8H12O8Pb
Molecular Mass: 443.37608
Monoisotopic Mass: 444.02986934
SMILES and InChIs

SMILES:
CC(=O)[O-].CC(=O)[O-].CC(=O)[O-].CC(=O)[O-].[Pb+4]
Canonical SMILES:
[O-]C(=O)C.[O-]C(=O)C.[O-]C(=O)C.[O-]C(=O)C.[Pb+4]
InChI:
InChI=1S/4C2H4O2.Pb/c4*1-2(3)4;/h4*1H3,(H,3,4);/q;;;;+4/p-4
InChIKey:
JEHCHYAKAXDFKV-UHFFFAOYSA-J

Cite this record

CBID:295365 http://www.chembase.cn/molecule-295365.html

Collapse All Expand All

NAMES AND DATABASE IDS

NAMES AND DATABASE IDS

Names Database IDs
IUPAC name
lead(4+) ion tetraacetate
IUPAC Traditional name
lead(4+) ion tetraacetate
Synonyms
Lead tetraacetate
Lead(IV) acetate
乙酸铅(IV)
CAS Number
546-67-8
EC Number
208-908-0
MDL Number
MFCD00008693
Beilstein Number
3595640
Merck Index
145423
PubChem SID
180680896
PubChem CID
9846230

DATA SOURCES

DATA SOURCES

All Sources Commercial Sources Non-commercial Sources
Data Source Data ID Price
Alfa Aesar
A15551 external link Add to cart Please log in.
Data Source Data ID
PubChem 9846230 external link

CALCULATED PROPERTIES

CALCULATED PROPERTIES

JChem
Acid pKa 4.54344  H Acceptors
H Donor LogD (pH = 5.5) -1.2242727 
LogD (pH = 7.4) -2.9968748  Log P -0.22334571 
Molar Refractivity 23.4808 cm3 Polarizability 4.912116 Å3
Polar Surface Area 40.13 Å2 Rotatable Bonds
Lipinski's Rule of Five true 

PROPERTIES

PROPERTIES

Physical Property Safety Information Product Information Bioassay(PubChem)
Melting Point
175°C expand Show data source
Density
2.28 expand Show data source
Storage Warning
Moisture Sensitive expand Show data source
RTECS
AI5300000 expand Show data source
European Hazard Symbols
Nature polluting Nature polluting (N) expand Show data source
Toxic Toxic (T) expand Show data source
UN Number
UN1616 expand Show data source
Hazard Class
6.1 expand Show data source
Packing Group
III expand Show data source
Risk Statements
61-20/22-33-62-50/53 expand Show data source
Safety Statements
53-45-60-61 expand Show data source
TSCA Listed
expand Show data source
GHS Pictograms
GHS07 expand Show data source
GHS08 expand Show data source
GHS09 expand Show data source
GHS Hazard statements
H360-H373-H400-H410-H302-H332 expand Show data source
GHS Precautionary statements
P260-P261-P281-P304+P340-P405-P501A expand Show data source
Purity
96% (dry wt.), stab. with 5-10% glacial acetic acid expand Show data source

DETAILS

DETAILS

REFERENCES

REFERENCES

From Suppliers Google Scholar IconGoogle Scholar PubMed iconPubMed Google Books IconGoogle Books
  • • Versatile oxidizing agent and source of acetoxy radicals. For a review of one-step acetoxylation at carbon, see: Synthesis, 567 (1973). See also: M. Hudlicky, Oxidations in Organic Chemistry, ACS Monograph 186, Washington DC (1990). Oxidizes silyl enol ethers to ɑ-acetoxycarbonyl compounds in high yields: Tetrahedron, 39, 861 (1983). In combination with a metal halide, enol ethers are similarly converted to ɑ-halocarbonyl compounds: Synthesis, 1021 (1982).
  • • Cleaves vic-glycols to carbonyl compounds; see, e.g.: Org. Synth. Coll., 4, 124 (1963).
  • • N-Formylanilines are oxidized to isocyanates. In the presence of methanol, the reaction affords the methyl urethanes directly: Synthesis, 225 (1982).
  • • Carboxylic acids undergo oxidative decarboxylation; review: Org. React., 19, 279 (1972). In the presence of LiCl, the alkyl chloride is obtained (Kochi reaction): J. Am. Chem. Soc., 87, 2500 (1965); Synth. Commun., 20, 1011 (1990). Yields are lower for the bromide and iodide, cf Hunsdiecker reaction (see Mercury(II) oxide, A16157). Use of NCS allows successful scale-up: Synthesis, 493 (1973).
  • • Intramolecular oxidative cyclization of alcohols with the reagent leads to tetrahydrofurans or tetrahydropyrans, a useful method for the functionalization of remote positions; review: Synthesis, 279 (1970). For a review of the hypoiodite method for the functionalization of remote positions such as the angular methyl groups of steroids, e.g. by reaction with lead tetraacetate and iodine, see: Synthesis, 501 (1971). For use in the synthesis of protoadamantane, see: Org. Synth. Coll., 6, 958 (1988). Compare Iodosobenzene diacetate, B24531.
  • • -Hydroxystannanes undergo oxidative fragmentation in a synthesis of unsaturated macrolides: Org. Synth. Coll., 8, 562 (1993).
  • • For use in dichloroacetic acid for the plumbation of activated aromatics to form aryllead(IV) triacetates, which are useful arylating agents for active methylene groups under very mild conditions, see: Org. Synth. Coll., 7, 229 (1990). For N-arylation of amides, see: J. Org. Chem., 61, 5865 (1996). Arylboronic acids also give aryllead(IV) triacetates, used in situ for electrophilic arylation: J. Chem. Soc., Perkin 1, 715 (1990). For a review of the use of organolead(IV) triacetates in synthesis, see: Pure Appl. Chem., 68, 819 (1996).
  • Searching...Please wait...

PATENTS

PATENTS

PubChem iconPubChem Patent Google Patent Search IconGoogle Patent

INTERNET

INTERNET

Baidu iconBaidu google iconGoogle