Home > Compound List > Compound details
15529-49-4 molecular structure
click picture or here to close

λ2-ruthenium(2+) ion tris(triphenylphosphane) dichloride

ChemBase ID: 126990
Molecular Formular: C54H45Cl2P3Ru
Molecular Mass: 958.832383
Monoisotopic Mass: 958.11546569
SMILES and InChIs

SMILES:
[Ru+2].[Cl-].[Cl-].c1c(P(c2ccccc2)c2ccccc2)cccc1.c1ccccc1P(c1ccccc1)c1ccccc1.c1ccccc1P(c1ccccc1)c1ccccc1
Canonical SMILES:
c1ccc(cc1)P(c1ccccc1)c1ccccc1.c1ccc(cc1)P(c1ccccc1)c1ccccc1.c1ccc(cc1)P(c1ccccc1)c1ccccc1.[Cl-].[Cl-].[Ru+2]
InChI:
InChI=1S/3C18H15P.2ClH.Ru/c3*1-4-10-16(11-5-1)19(17-12-6-2-7-13-17)18-14-8-3-9-15-18;;;/h3*1-15H;2*1H;/q;;;;;+2/p-2
InChIKey:
WIWBLJMBLGWSIN-UHFFFAOYSA-L

Cite this record

CBID:126990 http://www.chembase.cn/molecule-126990.html

Collapse All Expand All

NAMES AND DATABASE IDS

NAMES AND DATABASE IDS

Names Database IDs
IUPAC name
λ2-ruthenium(2+) ion tris(triphenylphosphane) dichloride
IUPAC Traditional name
λ2-ruthenium(2+) ion tris(triphenylphosphine) dichloride
Synonyms
Ruthenium tris(triphenylphosphine) dichloride
Tris(triphenylphosphine)dichlororuthenium
Tris(triphenylphosphine)ruthenium dichloride;Tris(triphenylphosphine)ruthenium(II) dichloride
Dichlorotris(triphenylphosphine)ruthenium(II)
Tris(triphenylphosphine)ruthenium(II) chloride
Dichlorotris(triphenylphosphine)ruthenium(II)
Dichlorotris(triphenylphosphine)ruthenium(II), Premion®
三(三苯基膦)二氯化钌(II)
三(三苯基膦)二氯化钌(II), Premion®
CAS Number
15529-49-4
EC Number
239-569-7
MDL Number
MFCD00013077
PubChem SID
162221313
PubChem CID
84971
Chemspider ID
76650
Wikipedia Title
Dichlorotris(triphenylphosphine)ruthenium(II)

CALCULATED PROPERTIES

CALCULATED PROPERTIES

JChem
H Acceptors H Donor
LogD (pH = 5.5) 5.1066  LogD (pH = 7.4) 5.1066 
Log P 5.1066  Molar Refractivity 81.6229 cm3
Polarizability 32.34495 Å3 Polar Surface Area 0.0 Å2
Rotatable Bonds Lipinski's Rule of Five false 

PROPERTIES

PROPERTIES

Physical Property Safety Information Product Information Bioassay(PubChem)
Solubility
Very slightly soluble (with dissociation) in acetone, alcohol, chloroform, ethyl acetate, and toluene expand Show data source
Apperance
Black Crystals or Red-Brown expand Show data source
Crystalline powder expand Show data source
Melting Point
132.85°C (406K) expand Show data source
132-134°C expand Show data source
Density
1.43 g/cm3 expand Show data source
Storage Warning
Air & Moisture Sensitive expand Show data source
TSCA Listed
expand Show data source
Purity
97% expand Show data source
99.95% (metals basis), Ru 10.2% min expand Show data source

REFERENCES

REFERENCES

From Suppliers Google Scholar IconGoogle Scholar PubMed iconPubMed Google Books IconGoogle Books
  • • Versatile homogeneous isomerization, reduction and oxidation catalyst.
  • • Homoallylic alcohols can be isomerized to allylic: J. Am. Chem. Soc., 118, 12867 (1996); Tetrahedron, 54, 5129 (1998).
  • • In combination with ethylenediamine and KOH in 2-propanol, conventional hydrogenation of ketones can be accomplished: J. Am. Chem. Soc., 117, 2675 (1995); J. Org. Chem., 61, 4872 (1996). This combination is also effective for the selective reduction of aldehydes and ketones in the presence of alkenes, whereas only olefinic bonds can be reduced with the Ru complex alone: J. Am. Chem. Soc., 117, 10417 (1995):
  • • Catalyzes hydrogenation of aromatic nitro compounds to amines; selective reduction is possible in the presence of halogen, ester, nitrile and even additional nitro groups: Tetrahedron Lett., 2163 (1975). Aliphatic nitro compounds are hydrogenated to amines under high pressure: J. Org. Chem., 40, 519 (1975). Also catalyzes the high-yield reduction of nitroarenes to amines, indoles to indolines, quinolines to 1,2,3,4-tetrahydroquinolines by formic acid and triethylamine: Bull. Chem. Soc. Jpn., 57, 2440 (1984).
  • • Catalyzes the cyclization 2-aminophenethyl alcohols to indoles in high yield: J. Org. Chem., 55, 580 (1990):
  • • Catalyst for the reaction of N-alkylanilines with triethanolamine in dioxan (autoclave) to give the corresponding 1-alkylindoles in good yield: Synth. Commun., 26, 1349 (1996).
  • • In the presence of acetone, secondary alcohols can be oxidized to ketones: J. Chem. Soc., Chem. Commun., 337 (1992). For use in the dehydrogenation of amines to imines and the oxidation of cyanohydrins to acyl cyanides, see tert-Butyl hydroperoxide, A13926. In combination with hydroquinone, selective aerobic oxidation of a primary alcohol to an aldehyde, in the presence of a secondary alcohol, can be achieved: Tetrahedron Lett., 39, 5557 (1998).
  • • Alkylated arenes can be oxidized to ketones by tert-butyl hydroperoxide, catalyzed by the complex: J. Org. Chem., 65, 9186 (2000).
  • • In the presence of KOH, catalyzes the one-pot ɑ-alkylation of secondary alcohols with primary alcohols: Organometallics, 22, 3608 (2002).
  • Searching...Please wait...

PATENTS

PATENTS

PubChem iconPubChem Patent Google Patent Search IconGoogle Patent

INTERNET

INTERNET

Baidu iconBaidu google iconGoogle